• AGI
  • A Journey Through Dynamic Compressing Prompts: Revolutionizing How We Use LLMs

Imagine having to read hundreds of pages every time you want to know one simple fact. Frustrating, isn’t it? Now imagine if you could trim those pages down to just the essential bits—and still get all the information you need. That’s the challenge researchers face with large language models (LLMs) today. Although models like GPT-4 generate amazing outputs, they require long and complex prompts that not only drain computational resources but also slow down inference. Enter the innovative world of Dynamic Compressing Prompts (LLM-DCP).

In this blog post, we’ll delve into how LLM-DCP transforms prompt compression into a dynamic, iterative decision-making process. We will explore the inspiration behind the technique, how it uses reinforcement learning to trim words without losing meaning, and the impressive experimental results it achieves.

─────────────────────────────────────────────

🔍 The Problem: When Too Much Is Just Too Much

Large language models work wonders in a myriad of applications—from answering our questions and crafting poems to summarizing research papers. However, there’s a catch: these models rely on “prompts” (the text input given to them) that can often be excessively long.

The Challenges with Long Prompts

  • Context Sensitivity: LLMs love context. Removing parts of a prompt might jeopardize the model’s ability to generate coherent and accurate responses.
  • Information Retention: How do you decide which words are important? Traditional methods sometimes trim too much, causing significant information loss.
  • Task-Agnostic Compression: Many prompt compression techniques are designed for specific tasks. A method that works for summarization may not work well for a dialogue system.

The key question is: can we dynamically and intelligently compress prompts while preserving the magic that fuels LLMs?

─────────────────────────────────────────────

🤖 A Dynamic, Iterative Approach: The Birth of LLM-DCP

The authors tackle the problem by reimagining prompt compression as a sequential decision-making process. Think of it as editing a long email by gradually removing unnecessary words, one decision at a time.

Viewing Prompt Compression Through the Lens of an MDP

At its core, LLM-DCP models the prompt as a Markov Decision Process (MDP). What does that mean?

  • State: Imagine your prompt as a series of tokens. The current state is the present version of your prompt (which can get shorter as you go).
  • Action: For every token, the agent decides whether to keep it (label “1”) or remove it (label “0”).
  • Transition: After each decision, the prompt changes—tokens are stricken off, and a new, compressed prompt emerges.
  • Reward: The magic lies in the reward function. The agent is rewarded if the compressed prompt retains key information, leads to similar LLM outputs compared to the original, and achieves a high level of compression.

In simple terms, the agent learns how to “edit” the prompt. It gradually refines the text, balancing between brevity and content preservation.

─────────────────────────────────────────────

🎯 The Key Ingredients: Reward Function & Hierarchical Training

A Reward Function That Balances Trade-offs

The reward function is designed to optimize three main objectives:

  • Compression Rate: Fewer tokens means faster and cheaper inference.
  • Output Consistency: The results produced by the LLM with the compressed prompt should closely resemble the results produced by the original prompt. This similarity is measured using the Kullback-Leibler divergence.
  • Key Information Retention: Using a metric like BertScore, it ensures that the essential meaning of the text remains intact.

Mathematically, the reward function looks something like this:

  Reward = α(1/ρ) + β·D(s₀, sₜ) – γ·KL(…)


Here, ρ represents the compression rate, D(·,·) measures similarity between the original and compressed prompts, and α, β, γ are tuning parameters to balance these factors. This control ensures the agent doesn’t simply delete everything in pursuit of brevity.

Hierarchical Prompt Compression (HPC): Learning Gradually

Inspired by curriculum learning, the authors introduce a hierarchical training strategy that gradually increases compression difficulty. Early in training, the agent starts with easier tasks (e.g., compressing a prompt slightly) and progressively handles more aggressive compression challenges. This approach is akin to learning the basics of a language before tackling complex literature—ensuring that, over time, the agent becomes adept at making precise removal decisions.

─────────────────────────────────────────────

📊 Real-World Impact: Experiments Speak Louder Than Words

The researchers validate LLM-DCP across multiple downstream tasks, including:

  • Conversational Systems: On a dataset like ShareGPT, LLM-DCP outperforms previous methods in BLEU score and BertScore while reducing tokens by a factor of 3.4x.
  • Summarization Tasks: On the Arxiv-March23 dataset, the method not only improves the Rouge-2 score by over 3% compared to other state-of-the-art techniques, but it also delivers a compression ratio as high as 12.9x.
  • Reasoning and In-context Learning: Even on challenging reasoning tasks and CoT prompts, LLM-DCP maintains high-quality output while significantly trimming the input size.

These improvements mean that using LLM-DCP can result in faster responses and lower cost, without a trade-off in performance—a critical benefit for real-world applications.

─────────────────────────────────────────────

🚀 Why It Matters: Efficiency Meets Intelligence

The significance of LLM-DCP is twofold:

  1. Cost Efficiency: By drastically reducing the number of tokens, we cut down on inference time and computational costs. This efficiency is especially crucial when deploying models in production environments where response time is critical.
  2. Universality: Given its task-agnostic design, the method can be applied seamlessly across various applications—from chatbots to content summarizers—making it a versatile tool in the LLM toolkit.

Moreover, the clever use of reinforcement learning (without needing direct supervision from a large black-box LLM) means that the method is both practical and scalable.

─────────────────────────────────────────────

🔚 In Conclusion

Dynamic Compressing Prompts (LLM-DCP) elegantly addresses a fundamental challenge in the age of large language models: how to maintain performance while cutting down on input size. By rethinking prompt compression as a sequential decision-making process, leveraging a well-crafted reward function, and employing a hierarchical training strategy, LLM-DCP paves the way for more efficient, cost-effective use of LLMs.

As LLMs continue to grow in capability and complexity, techniques like LLM-DCP will play a crucial role in ensuring that these models not only perform brilliantly but also do so without breaking the bank in terms of computational resources. Whether you’re a researcher, a developer, or simply a tech enthusiast, the advancements in prompt compression signal an exciting future where artificial intelligence becomes ever more efficient and widely accessible.

References:

  1. Brown, T. et al. “Language Models are Few-Shot Learners.” arXiv:2005.14165, 2020.
  2. Wei, J. et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models.” NeurIPS, 2022.
  3. Jiang, H. et al. “LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models.” EMNLP, 2023.
  4. Chevalier, A. et al. “Adapting Language Models to Compress Contexts.” EMNLP, 2023.
  5. Schulman, J. et al. “Proximal Policy Optimization Algorithms.” arXiv:1707.06347, 2017.

─────────────────────────────────────────────

探索动态提示压缩:大语言模型高效推理的全新方式

想象一下,如果每次只需阅读几页精华内容就能获得全书智慧,是不是既省时又省力?在大语言模型(LLM)的世界中,提示(prompt)往往冗长复杂,虽然可以提供充足上下文,但同时带来了计算资源紧张、推理时间较长、以及上下文窗口受限等一系列问题。本文介绍的《Dynamic Compressing Prompts for Efficient Inference of Large Language Models》正是为了解决这一难题而诞生的一项前沿技术。

接下来,我们将深入这一技术的背景、方法、实验结果及其实际意义,共同探讨如何在不牺牲关键信息的前提下大幅压缩提示,提高大模型推理效率。

─────────────────────────────

🔍 问题背景 —— 冗长提示的双刃剑

大语言模型在对话系统、文本摘要、逻辑推理等多个领域中展现了强大的能力。然而,模型为了理解复杂任务,往往需要输入冗长的提示,导致以下几大问题:

  • 上下文敏感性: 大模型高度依赖提示中的上下文信息,直接删除部分内容可能影响生成结果的连贯性与准确性。
  • 信息保留难题: 在压缩提示时,如何既剔除冗余又不误删关键信息是一个挑战。
  • 任务无关性要求: 现有的许多方法只适用于特定任务,难以跨任务通用。

因此,我们亟需一种普适的提示压缩方法,即在大幅降低令牌数量的同时,确保模型输出与原提示保持一致或相似,从而降低推理成本和时间。

─────────────────────────────

🤖 创新之道 —— 将提示压缩建模为动态决策

作者提出了一种名为 LLM-DCP(Dynamic Compressing Prompts)的全新方法,将提示压缩问题视作一个动态、迭代的决策过程。整个思路核心体现在以下几点:

1. 利用马尔可夫决策过程(MDP)对提示进行建模

  • 状态(State): 将提示视为由一系列令牌组成的序列。初始状态即为原始提示文本,而经过每步压缩操作后,状态将更新为更短的提示。

  • 动作(Action): 对于每个令牌,智能代理(DCP-Agent)分别做出“保留”(记为1)或“删除”(记为0)的二分类决策,从而生成一个动作向量。

  • 状态转移(Transition): 根据当前状态与动作,在转换函数(记为 𝓜ₐ(·))作用下,生成新状态。例如:


    sₜ₊₁ = 𝓜ₐₜ(sₜ)


    表示根据动作 aₜ 对当前提示 sₜ 进行编辑后的新提示。

  • 奖励函数(Reward): 设计精妙的奖励函数,不仅考量压缩率,同时衡量模型输出分布与信息保留程度。也就是说,当压缩后的提示能够让大模型产生与原始提示相似的输出,并且有效减少令牌数时,代理将获得高奖励。

这样一来,整个提示压缩过程就好比一位编辑在不断修改文章,每一步决策都基于当前文本状态,目标始终是“去芜存菁”。

2. 精心设计的奖励函数

奖励函数在 LLM-DCP 中起着关键作用,它综合平衡了三个目标:

  • 压缩率奖励: 希望尽量减少令牌数量,因此低压缩率(即较少令牌)将获得更高奖励。
  • 输出一致性: 利用 KL 散度等度量,确保压缩后提示生成的模型输出与原始提示输出相似。
  • 关键信息保留: 借助 BertScore 等指标,评估压缩前后文本在关键信息上的相似性,避免重要内容被误删。

这种奖励设计确保代理不会因追求极限压缩而将关键信息“扔掉”,而是通过细致的权衡获得最佳平衡点。

3. 层次化提示压缩(HPC) —— 循序渐进学智能

受课程学习(Curriculum Learning)启发,作者提出了一种层次化训练策略。具体来说:


  • 在初期,代理只面对相对简单的提示删除任务,压缩强度较低;
  • 随着训练的深入,逐渐引入更高难度的压缩任务,迫使代理学会在更激烈的条件下谨慎决策;

这种循序渐进的策略保证了模型在逐步适应高难度任务时,仍能保持对关键信息的准确把控,从而在整个压缩过程中达到最佳效果。

─────────────────────────────────────────────

📊 实验结果 —— 成果斐然的跨任务性能

论文中,作者在多个下游任务上验证了 LLM-DCP 的卓越性能,包括对话、摘要、逻辑推理和上下文学习等领域。下面是部分实验亮点:

  • 对话任务: 在 ShareGPT 数据集上,LLM-DCP 相较于传统方法提升了 BLEU 和 BertScore 分数,同时实现了约 3.4 倍的令牌压缩效果,让模型在对话回复时更高效。
  • 摘要任务: 在 Arxiv-March23 数据集上,LLM-DCP 在 Rouge-2 指标上相对于其他方法提升了约 3%9%,并且压缩比例高达 12.9 倍,不仅大幅降低了计算成本,也保持了输出摘要的准确性。
  • 推理与上下文学习: 在 GSM8K 和 BBH 数据集上,LLM-DCP 保持了高质量输出的同时,依然大幅减少了输入令牌数量,证明其跨任务的适用性与鲁棒性。

此外,通过消融实验,论文还证明了将提示压缩建模为 MDP 和采用层次化训练策略的关键作用。没有这两个关键模块,模型的性能和压缩效果都会明显下降。

─────────────────────────────────────────────

🚀 结语 —— 开拓大模型高效推理的新局面

LLM-DCP 的核心贡献在于提出了一种任务无关的提示压缩方法,将复杂的文本编辑过程转变为一种动态迭代的决策问题。通过利用强化学习中的马尔可夫决策过程模型,并辅以精心设计的奖励函数及层次化训练策略,LLM-DCP 既能够大幅降低提示中令牌的数量,又能保证生成内容的质量不受损失。

这一创新技术不仅有望显著降低大模型的推理成本与响应时间,更为未来在移动设备、实时在线服务等对计算资源要求严苛的场景中应用大模型提供了全新的思路和方法。随着大语言模型不断发展,提示压缩技术将成为优化资源利用、提高推理效率的重要突破口。

不论你是 AI 研究者、开发工程师还是 AI 爱好者,LLM-DCP 都展示了一种令人惊喜的可能性:在保证智能品质的同时,让我们用更少的“文字”产生更多的智慧!

─────────────────────────────────────────────

参考文献:

  1. Brown, T. 等,“Language Models are Few-Shot Learners”,arXiv:2005.14165, 2020。
  2. Wei, J. 等,“Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”,NeurIPS, 2022。
  3. Jiang, H. 等,“LLMLingua: Compressing Prompts for Accelerated Inference of Large Language Models”,EMNLP, 2023。
  4. Chevalier, A. 等,“Adapting Language Models to Compress Contexts”,EMNLP, 2023。
  5. Schulman, J. 等,“Proximal Policy Optimization Algorithms”,arXiv:1707.06347, 2017。

─────────────────────────────────────────────

沪ICP备2024052574号-2